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I. Preliminaries

A. Introduction

We want to study quantum many-body problems on a lattice setting, where the geometry,

the lattice spacing and the number of degrees of freedom per site are fixed. Typically we will

consider regular lattices (in one or higher dimensions):

This setting may appear, for instance, in magnetism problems (e.g. classical spin models)

or in the study of strongly correlated systems. on each site (vertex or edges) of the lattices,

there is a finite dimensional degree of freedom (spin, qubit, fermion, . . . ). The interactions

between sites are described by an (effective) Hamiltonian that tries to capture the essential

physical features of the system. Some examples are

• the Heisenberg model

H = −
∑
〈i j〉

Ji j ~Si · ~Sj ,

introduced to describe magnetic ordering in materials;
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A Introduction I PRELIMINARIES

• the quantum Ising model

H = −J

∑
〈i j〉

Szi S
z
j + g

∑
i

Szi

 ,
paradigmatic to study quantum phase transitions;

• the Hubbard model

H = −t
∑
〈i j〉

∑
σ=↑,↓

(
c†iσcjσ + h.c.

)
+ U

∑
i

ni↑ni↓,

proposed to describe electrons in solids, which describes a transition between conducting

and insulating phases, and is a proposed model for high-Tc superconductivity.

In these problems, the goal is to determine

• ground state properties, i.e. phase diagrams, including quantum phase transitions;

• thermal equilibrium properties;

• dynamics, i.e. non-equilibrium behaviour, such as transport properties.

The state of the system can be represented in a tensor product basis. If the k−th site

has physical dimension dk and basis {|0〉, |1〉, . . . |dk − 1〉} (for instance, d = 2 for a qubit or

spin 1/2 particle), then the dimension of the whole space is D =
∏k
k=1 dk , and a basis for

the whole system can be constructed as

⊗k=1...L {|0〉, |1〉, . . . |dk − 1〉} .

Any state of the global system can be expressed by specifying the D (exponentially many)

coefficients in this basis.

In some cases, these problems can be addressed using analytical techniques. It is the case

of exactly solvable models (few) or perturbative regimes (when the main contribution is from

an exactly solvable part of the Hamiltonian). But such situations are limited and, in many

cases, numerical methods may be the only feasible approach. Specially relevant among such

numerical techniques are
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• Exact diagonalization (ED) is the most direct method. The ground state, and all energy

eigenstates of the system can be found by directly solving the eigenvalue equation for

the Hamiltonian H|Ψ〉 = E|Ψ〉. There are numerical linear algebra packages that

solve this problem. In particular, in the usual case of being interested only in a few

eigenvalues at the edge of the spectrum, Lanczos methods can be applied. The cost of

the diagonalization scales as D3, i.e. exponentially with the system size. If the problem

has symmetries, they can be exploited to reduce the size of the problem by solving

it only in the interesting subspace, but ultimately exact diagonalization is limited to

systems of a few tens of qubits.

• Quantum Monte Carlo (QMC) methods are a set of computational methods that use

Monte Carlo techniques to study different properties (mostly ground state or thermal

equilibrium) of large quantum many-body systems. In many circumstances they can

provide the most accurate results in polynomial time, but there are particular scenarios

where they are hindered by the presence of a so-called sign problem (which arises when

trying to compute the integral of a highly oscillating function, with positive and negative

contributions that require precise estimation to cancel out). This is notably the case

for fermionic and highly frustrated systems, where the presence of the sign problem

can render the QMC methods exponentially slow.

• Tensor network (TN) methods, which these notes describe, provide an alternative

tool to study numerically strongly correlated quantum systems. In particular for one

dimensional systems they are nowadays a standard method, actually quasi-exact (see

also DMRG1). The understanding gained from quantum information theory has allowed

extensions to higher dimensions and different setups (periodic boundary conditions, time

evolution, and more).
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B Graphical notation I PRELIMINARIES

An arbitrary state of a quantum many-body system is

exponentially expensive to write. Tensor network states

(TNS) are entanglement-based ansatzes that try to

represent efficiently the physically relevant states of the

system.

Tensor network methods are successfully used to solve one-dimensional strongly-correlated

quantum systems,2 but also two-dimensional condensed matter problems3 and quantum

chemistry.4 They are also applied to study classical statistical problems,5,6 and in recent

years an increasing effort has been expanding them to other fields (gauge theories, machine

learning,. . . ).

Several introductory and review-like texts about tensor networks can be found in the liter-

ature. Some of them could be 7 for a conceptual presentation, 2 and 8 for detailed early

reviews about the MPS and PEPS algorithms, or 9–12 for more recent introductory texts,

in order of increasing technical details.

B. Graphical notation

The description of TNS properties and algorithms becomes much more simple and intuitive

using a pictorial representation.

A tensor is simply a multi-dimensional array, i.e. an object with a number of indices, each

of them with a finite (possibly different) dimension. Graphically we represent a tensor with

a box, and each of the indices with a leg. For instance, for an 8-rank tensor,
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The simplest instances would be a vector v (tensor with one leg) or a matrix M (tensor

with two legs),

A particular case is the identity matrix, with elements 1i j = δi j , which can be represented

by a line

A generalization is the copy tensor, with non-vanishing elements only when all the indices

have the same values, which, for the case of rank 3 can be represented as

Notice that specifying a value for each of the indices, as shown in the figures above,

selects a particular component of the tensor, but usually the representation is used to show

the whole object (i.e. all components).

A contraction (product and sum over a shared index) is represented by a leg joining two

tensors. For instance for the scalar product of two vectors ~u ·~v , for a matrix-vector ~w = M ·~v ,

or a matrix-matrix multiplication Q = N ·M, we draw
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Also the trace of a matrix, or the partial trace in the case of a multidimensional tensor,

can be represented in this way

A warning is in order here: there is no unique convention to indicate the transposition or

conjugation of a tensor. It can be written explicitly but sometimes it is understood from the

context, for instance, if representing the contraction of a vector with itself to compute the

norm.

A crucial aspect to consider when talking about algorithms is the computational costs.

In TNS algorithms, the leading costs come from the low level tensor manipulations. The

running time is estimated by the number of elementary operations needed. For example, the

scalar product of two vectors involves a multiplication and a sum for each component, thus

has a cost O(D), if the dimension of the vectors is D.

Big-O notation: A function f (n) = O (g(n)) if there exist constants c > 0 and n0 such that

∀n > n0, |f (n)| ≤ c |g(n)|.
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The same is true for each element that needs to be computed in a matrix-vector or matrix-

matrix multiplication, which thsus have respectively costs O(D2) and O(D3) if all the dimen-

sions involved are equal, or, in general

In general, the cost of contracting two tensors (over any number of indices) scales as the

product of dimensions of all legs, contracted or not O(
∏
j contractedDj

∏
k openDk).

The cost of multiplying two D ×D matrices scales as O(D3) for the straightforward multi-

plication. There are more efficient algorithms. The fastest known scales as O(D2.373) (but

is not practical for matrices of real sizes), and there is a lower bound for the complexity

Ω(D2 logD), established by Raz in 2002.

Other operations used often in TNS algorithms are the diagonalization and singular value

decomposition. The first one typically is used to find an approximation to the lowest eigen-

value of a matrix, and can be performed via iterative algorithms (based on repeated multipli-

cations) that have a cost O(D3) for a D ×D matrix. The singular value decomposition for

a m × n matrix has a cost O(min(n2m, nm2)).

1. Quantum information concepts

The field of TNS is intimately linked to quantum information theory. Here we just re-

view the indispensable concepts to follow the rest of the lecture. A more complete basic

introduction or refresher of quantum mechanical concepts can be found in chapter 2 of.13
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States of a quantum system are represented as (normalized) vectors

in a Hilbert space H, a complex vector space equipped with an inner

product. For a system of physical dimension d , H = Cd . Using Dirac’s

notation, vectors are represented as kets |v〉 ∈ H, and bras are elements

of the dual space 〈v | ∈ H∗, i.e. linear operators from H to C.

We can consider a composite system, formed by two quantum systems

A and B, with Hilbert spaces HA and HB. The global Hilbert space is

the tensor product HS = HA ⊗ HB. Any pure state can be written as

|ψS〉 =
∑

α, β ψαβ|α〉A⊗|β〉B, where {|i〉A(B)}
dA(B)−1

i=0 are orthogonal bases for each subsystem.

The state of one of the subsystems, in general, will be described by the reduced density

matrix (rdm), for instance, for subsystem A,

ρA = trB(|ψS〉〈ψS|) :=
∑
β

〈βB|ψS〉〈ψS|βB〉 =
∑
αα′

∑
β

ψαβψ
∗
α′β|α〉〈α′|.

Graphically

This determines the expectation values of any observable that is local to A (i.e. acts only on

A) OA ⊗ 1B

〈ψ|OA|ψ〉 = tr(ρAOA).

If the state |ψS〉 can be written as a product, |ψS〉 = |ϕ〉A ⊗ |φ〉B, we say it is separable,

and in that case, also the reduced staes for A and B are pure (i.e. their reduced density

matrices have rank one). Otherwise, the state |ψS〉 is entangled. The entanglement entropy

is defined as the von Neumann entropy of the reduced density matrix,

SE = S(ρA) := −tr (ρA log ρA) .

For any density operator ρ, the von Neumann entropy, S(ρ) = −trρ log ρ has (among

others) the following properties
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• S(ρ) ≥ 0;

• S(ρ) = 0⇔ ρ = |φ〉〈φ|, i.e. iff the state is pure;

• it is maximal, Smax = logD, for the maximally mixed state ρ = 1/D (being D the

dimension of the Hilbert space);

• it is invariant under unitary transformations ρ→ UρU†;

• subadditivity: S(ρAB) ≤ S(ρA) + S(ρB).

In the case of a pure bipartite state as |ψS〉 above, the entanglement entropy is the

genuine measure of entanglement between A and B. For mixed and multipartite systems, on

the other hand, quantifying and classifying entanglement becomes much more involved, and

is the subject of study of entanglement theory.13

An extremely useful concept to character-

ize entanglement is the Schmidt decompo-

sition, which follows from the singular value

decomposition (SVD) of the coefficients ma-

trix ψαβ above. Any matrix admits a SVD,

of the form M = USV † (represented graph-

ically in the figure), where S is a diagonal matrix, with real non-negative elements, and U

and V are isometries.

For finite dimensional cases, an isometry can be thought of as a part (either a subset of

columns or a subset of rows) of a unitary matrix.

In the pictorial representation, isometries are often depicted as triangles and their properties

can be represented as
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The first line represents the isometric property U†U = 1, and the last line indicates that the

result of contracting the isometry with its adjoint over the small dimension is a projector.

The diagonal elements of S are known as singular values and the rank of the matrix is equal to

the number of them which are different from zero. By choosing them to appear in descending

order, the SVD factorization of a matrix is unique (up to permutations of degenerate singular

values).

By taking the SVD, the coefficient matrix of the state |ψS〉 above can be written as

ψαβ =
∑

k UαkλkV
†
kβ. The isometries can be used to define two new sets of orthogonal

vectors,

|uk〉A =
∑
α

Uαk |α〉A, |vk〉B =
∑
β

V †kβ|β〉B,

(satisfying 〈uk |uk ′〉 = δkk ′, 〈vk |vk ′〉 = δkk ′), in terms of which the state reads

|ψS〉 =
∑
k

λk |uk〉A|vk〉B.

This is known as the Schmidt decomposition of the state, and the number of terms in the

sum is called Schmidt rank. The same as the SVD, the Schmidt decomposition is unique,

up to permutations of degenerate Schmidt values.

The Schmidt decomposition of a pure state directly yields the rdm for the subsystems,

ρA = trB(|ψ〉〈ψ|) =
∑
k

λ2
k |uk〉〈uk |, ρB = trA(|ψ〉〈ψ|) =

∑
k

λ2
k |vk〉〈vk |

and thus determines the entanglement entropy SE = S(ρA) = S(ρB) = −
∑

k λ
2
k logλ2

k .

Graphically,

If the state of the system is not completely known, we may describe it via a density matrix

that represents an ensemble

ρ =
∑
i

pi |ϕi〉〈ϕi |,
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A Tensor network states: concepts II TNS ANSATZES

with pi ≥ 0,
∑

i pi = 1. The values pi represent the probability of having the system in state

|ϕi〉 (more generally, we can have ρ =
∑

i piρi given as a mixture of mixed states). Notice

that the formalism accommodates also the pure case, in which case ρ = |ψ〉〈ψ|.

Finally, another useful result from quantum information is the following. For any mixed

state of the system ρS, we can always find a purification, i.e. a pure state of a larger system

|ΨSR〉 (system S plus ancilla R, where the dimension of the ancilla is at most as large as

that of the system) such that ρ = trR (|ΨSR〉〈ΨSR|).

II. TNS Ansatzes

A. Tensor network states: concepts

While tensor networks have appeared in different fields, here we are concerned with the

description of quantum many-body systems and their physically relevant states. For a system

with N individual sites (subsystems), each of them with finite physical dimension d , a general

state can be written as

|ψ〉 =

d−1∑
{i1, 12...iN}=0

Ci1, 12...iN |i1, 12 . . . iN〉,

i.e. it is an N-rank tensor, of dimension dN (graphically in the figure).

In general, tensor network states (TNS) are families of states

for which there is a more efficient description. In a TNS the tensor

of coefficients has a particular structure, namely that of a tensor

network (see illustration). Typically the TNS is constructed out of

a polynomial number of small tensors, each of them with a number

of components that does not depend on the system size. While any such TNS can be written

in the generic form, the converse is not true in general.

The simplest example is that of a product state, such as in a mean field ansatz,

|ψ〉 =|ϕ1〉 ⊗ |ϕ2〉 ⊗ . . .⊗ |ϕN〉 =

(∑
i1

c i11 |i1〉

)
⊗ . . .⊗

(∑
iN

c iNN |iN〉

)

=

d−1∑
{i1, 12...iN}=0

c i11 c
i2
2 . . . c

iN
N |i1, i2 . . . iN〉 (1)
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Each of the coefficients is thus computed as a product of scalar

values: one component of each vector. This state can be repre-

sented as shown on the left. Because the state is specified by one

d-dimensional vector per site, the number of parameters is O(Nd).

To go one step beyond the product ansatz, we may replace the

vectors by matrices of a certain dimension D × D. This yields a

matrix product state (MPS), which pictorially can be represented

as shown on the right. In this case, each Ci1, 12...iN coefficient can be

computed as a product of matrices, and the number of parameters

scales as O(NdD2).

Notice that TN can also be used to represent other objects, not necessarily pure quantum

states. For instance, a TN with no open indices can represent the partition function of a

classical model, or the expectation value of particular observables. TN can also be used to

write or approximate operators, in particular density matrices.

1. Area law

Having only polynomial number of parameters, a TNS family cannot capture the exponen-

tial complexity of the whole Hilbert space. But physical states explore only a small fraction

of the latter. And the goal of TNS ansatzes is precisely to describe such region. It turns

out that a most remarkable property of equilibrium states is that they contain a very small

amount of entanglement.

Let us consider a bipartition of the many-body system into two

subsystems A and B (such as illustrated in the figure). For most

states in the Hilbert space the entanglement entropy will grow as

the number of sites enclosed in (the smallest) subsystem A, i.e. as

the volume of A (in a regular D−dimensional lattice SA ∼ LD).

In contrast, ground states of local Hamiltonians often present a

very different behaviour, known as area law of entanglement.14 A

bipartite state satisfies the area law if the entanglement entropy scales only as the size of

14



B Matrix product states (MPS) II TNS ANSATZES

the boundary between regions A and B (SA ∼ LD−1 in a regular lattice as the one depicted

in the figure). The area law is rigorously proved in the case of one dimensional gapped local

Hamiltonians.15 For critical systems, which are gapless, the area law is violated, but only with

logarithmic corrections, SA . LD−1 logL, which means that the amount of entanglement in

these systems is still much smaller than the generic volume law.

There are also known exceptions16 for gapless systems for which the gap closes faster than

for any critical system described by a CFT and which have not logarithmic but
√
L corrections

to the area law.

Similar behaviour is expected for higher dimensional systems, but there is no mathematical

proof for the area law in that case. However, for local Hamiltonians in any dimension,

thermal equilibrium states17 at temperature T strictly satisfy an area law, only for the mutual

information, instead of the entanglement entropy. Namely

I(A : B) ≤
1

T
‖h‖|∂A|,

where ‖h‖ bounds the strength of the interaction and |∂A| denotes the size of the boundary.

Notice that, since the bound in this case scales with the inverse temperature, it does not

restrict the ground state (T = 0) case.

B. Matrix product states (MPS)

Matrix product states (MPS) are the paradigmatic TNS. As a TNS family, it is the one

for which mathematical properties are best understood, and from a practical point of view,

they allow for the most efficient algorithms. They are actually at the root of the success

of the density matrix renormalization group (DMRG) algorithm,1 probably the most precise

method to study one dimensional strongly correlated quantum systems (and even for some

two dimensional problems).

1. The quantum information construction

We can introduce the MPS family, as suggested earlier, as a restriction of the general

form of the coefficient tensors to a particular structure, where each coefficient is a product

of matrices. For a chain of N sites, each of them with physical dimension d ,

15



B Matrix product states (MPS) II TNS ANSATZES

|Ψ〉 =

d−1∑
i1,...iN=0

tr
(
Aii1A

i2
2 . . . A

iN
N

)
|i1 i2 . . . iN〉

Equivalently, they can be defined from the following construction that makes their entan-

glement properties immediately apparent. Let us consider a periodic chain of N sites, and

assign to each site two virtual systems of dimension D. We choose these systems to be

in a state such that the virtual systems that lie at the edges of the same lattice bond are

maximally entangled, i.e., they are in a state

|Φ〉 ∝
D−1∑
α=0

|αα〉

Graphically, we can represent the state of the chain as

with shaded regions representing the real space sites. The state is thus a product on N

such maximally entangled pairs |Φ〉⊗N. In order to obtain a state of the physical degrees of

freedom, we introduce, on each site of the chain M, a map PM that projects the states of

both virtual systems residing on the site onto the corresponding physical basis,

PM =
∑
i , α, β

(AM)iα β|i〉〈αβ|,

where AM is a rank-3 tensor (with dimension dD2) that specifies the map, and thus contains

the parameters that determine the physical state. In total, these are NdD2 parameters.

After applying these maps to all sites, the state looks like

16
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which is precisely a MPS, since

|Ψ〉 = P1 ⊗ P2 ⊗ . . . PN |Φ〉⊗N =

d−1∑
i1, i2,...=0

tr
(
Ai11A

i2
2 . . . A

iN
N

)
|i1 i2 . . . iN〉.

While the construction was explained assuming periodic boundary conditions (PBC), it

works also with open boundary conditions (OBC), with the only difference that there would

be no maximally entangled pair joining the first and last sites, and the corresponding maps

would be rank two tensors of dimension dD.

2. Examples

a. Product state

A product state |Ψ〉 = |ϕ1〉 ⊗ |ϕ2〉 ⊗ . . .⊗ |ϕN〉 is a MPS with D = 1. If each individual

state (for physical dimension d) is |ϕk〉 =
∑

i=0d−1 Ai[k]|i〉, the tensors of the MPS are the

d × 1× 1 A[k].

b. W-state

The entangled state |Ψ〉 = 1√
N

(|100 . . . 0〉+ |010 . . . 0〉+ . . .+ |00 . . . 01〉) for any num-

ber of sites N can be written as a MPS with D = 2 and tensors (in the middle of the

chain)

A0
[k] =

1 0

0 1

 , A1
[k] =

1√
N

0 1

0 0

 , for 1 < k < N,

and in the edges,

A0
[1] =

(
1 0

)
, A1

[1] =
1√
N

(
0 1

)
,

A0
[N] =

0

1

 , A1
[N] =

1√
N

1

0

 .
c. AKLT ground state

The AKLT model was introduced by Affleck, Kennedy, Lieb and Tasaki18 as an exactly

solvable spin s = 1 chain. The construction, which the MPS generalizes is the follow-

ing. Consider each site has two s = 1/2 components (the physical dof is s = 1, so their

state is projected onto the symmetric subspace), and there is a singlet between each pair

17



B Matrix product states (MPS) II TNS ANSATZES

of neighboring sites, 1√
2

(|00〉 − |11〉). Then two neighbouring sites contain four s = 1/2

components, but their total spin can never be the maximum (2), since the inner pair is in

the singlet configuration. Therefore, projecting two sites onto total spin S(i ,i+1) = 2 (where

~S(i ,i+1) := ~Si + ~Si+1) annihilates such state. If we define the Hamiltonian

HAKLT =
∑
k

P (S(k,k+1) = 2) =
∑
k

[
1

2
~Si · ~Si+1 +

1

6

(
~Si · ~Si+1

)2

+
1

3

]
,

1. it annihilates the state defined before (i.e. the state is an eigenstate with eigenvalue

0);

2. it is positive (as a sum of projectors) and thus the state with eigenvalue 0 is the ground

state.

3. Entanglement in MPS

By construction, MPS satisfy the area law. Since the maps PM are local, they cannot

increase the entanglement between sites and all entanglement in the system is already intro-

duced by the state |Φ〉⊗N. If we consider a bipartition of the chain, where subsystem A is

taken to be L contiguous sites in the middle, we can thus bound

S(ρA) ≤ S(trN\A|Φ⊗N〉〈Φ⊗N |) = 2 logD.

The last equality follows because the maximally entangled pairs that lie completely within

region A do not contribute to the entanglement, while both cut pairs each contribute logD.

Since in one spatial dimension the size of the boundary of a (connected) region is constant,

this corresponds to an area law.

How much a MPS can accommodate is then bounded by

the value of the bond dimension D. Moreover, tensors of a

certain bond dimension can be embedded in larger ones. The

MPS define thus a hierarchy of increasing entanglement as the

bond dimension increases, where the set of MPS with fixed D

includes all the MPS with smaller bond dimension, as illustrated

in the figure. The lowest one D = 1 corresponds to product

18
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states, and D = d bN/2c is enough to describe exactly the whole

Hilbert space.

Indeed, any state can be written as a MPS by sequentially applying SVDs across each

bond.
Starting from the left, the coefficient tensor can be re-

shaped as a d × dN−1 matrix. Applying a SVD can give

at most d non-vanishing singular values (the rank be-

ing bounded by the smallest dimension of the matrix).

Thus we obtain A1 ·S ·V †, and identify the left isometry

with the first MPS tensor (d ×D1 with D1 ≤ d). The

product S1 ·V †1 is a D1×dN−1 matrix, on which we apply

the same procedure, this time reshaping as D1d × dN−2

before performing the SVD. In this case, the maximum

number of non-vanishing values will be D2 ≤ d2. By

applying successive SVDs to each bond of the chain,

we arrive to a MPS form. The bond dimension across

each cut is the Schmidt rank of the bipartition across

the corresponding bond, with the largest possible value

corresponding to the bond closest to the center, so that

D ≤ d bN/2c.

4. Canonical form

We have just concluded that any vector can be written in the MPS form

|Ψ〉 =

d−1∑
i1, i2,...=0

tr
(
Ai11A

i2
2 . . . A

iN
N

)
|i1 i2 . . . iN〉,

but the Ak tensors are not unique. We can multiply the virtual indices by any D×D invertible

matrix X, and at the same time multiply the neighbouring tensor by its inverse, such that we

redefine the tensors, but the state does not change. Graphically

19



B Matrix product states (MPS) II TNS ANSATZES

This is called gauge freedom.

In the OBC case it is possible however to choose the gauge such that the MPS tensors

satisfy a canonical form.19 This is crucial for formal results, as it allows one to conclude

things about states looking only at local properties of the MPS tensors, but plays also a

fundamental role in the numerical algorithms, which can be made more efficient by choosing

the proper form of the tensors. For the M-th tensor the canonical form reads

∑
i

(AiM)†AiM = 1

∑
i

AiMΛM+1(AiM)† = ΛM

where ΛM are diagonal positive matrices with full rank. For a normalized state, their diag-

onal values correspond to the squared Schmidt values for the corresponding cut, i.e. the

eigenvalues of the reduced density matrix for the chain up to that point, and trΛk = 1. For

the first and last sites, Λ1 = ΛN+1 = 1. The canonical form is unique up to permutations

of the Schmidt values. Notice that the first part of the canonical condition establishes that,

properly reshaped, the MPS tensors are isometries.

This form of writing the canonical form is sometimes called left canonical. It is also

possible to choose a right canonical form in which the equations are exchanged.

∑
i

(AiM)†ΛM−1A
i
M = ΛM∑

i

AiM(AiM)† = 1
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Given a MPS which is not in canonical form, it is possible to reduce it to it by local matrices.

Namely, if |Ψ〉 =
∑

tr
(
Bi11 . . . B

iN
N

)
|i1 . . . iN〉, then there exist matrices Xk , Yk with YkXk =

1Dk , s.t. Aik = Xk−1B
i
kYk satisfies the canonical form. These matrices can be found with

only local operations.

5. Sequential generation

MPS can be equivalently defined as the family of states

that can be prepared by sequentially applying a unitary

onto an ancillary system of dimension D, initially in a

state |ϕI〉, and each of the local systems,20 initially pre-

pared in a state |0〉, as sketched in the figure. This

means that MPS can be efficiently prepared.

The ancillary system can be replaced by considering uni-

taries that act on M = 1 + logD/ log d sites, initially

prepared in a state |0〉. In terms of these unitaries, the

MPS tensors (except for the last M) are

Ak
i
αβ = 〈iβ|Uk |α0〉.

6. Expectation values

Expectation values of local operators (or tensor products of them) in a MPS can be

exactly computed efficiently, i.e. with a cost that scales linearly with the system size. The

expectation value of an operator of the form O = O1 ⊗ O2 ⊗ . . . ⊗ ON can be represented

graphically with the following TN.
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For each site k and local operator Ok we can define the following D2 ×D2 matrix

(
E

[k]
Ok

)
α̃β̃

:=
∑
i j

A[k]
i
αβ
A∗[k]

j

α′β′
〈j |Ok |i〉

with composite indices α̃ := (αα′), β̃ := (ββ′). For the particular case of the identity

operator Ok = 1, this is the transfer matrix

E[k] :=
∑
i

A[k]
i ⊗ A∗[k]

i

Notice that this object is central in the gauge

conditions, and the canonical form can also be

read as properties of the transfer operator.

The expectation value of the tensor product above can then be written as a product of

D2 ×D2 matrices (for OBC the first and last ones will just be vectors 1×D2 and D2 × 1).

〈Ψ|O|Ψ〉 = E
[1]
O1
E

[2]
O2
. . . E

[N]
ON
,

which can be computed with cost O(ND4). In the PBC case, the expectation value reduces

to a trace of a product of matrices, and the cost will be bounded as O(ND6).

Using the TN structure of the transfer operators, the cost in the OBC case can be reduced

to O(ND3), and to O(ND5) in the PBC case.

7. Correlations

In a MPS, two-point correlations decay exponentially. Let us define the connected two-

point correlator

CO1O2
(x, x + `) := 〈O[x ]

1 O
[x+`]
2 〉 − 〈O[x ]

1 〉〈O
[x+`]
2 〉,

and consider a translationally invariant case (i. e. all tensors are equal Ak =: A), for a chain

in the thermodynamic limit N →∞ (in which case the boundary conditions are irrelevant). In

such case, the correlator depends only on the distance `, and not on the position x . In terms
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of the transfer operators introduced before, the expectation value of a single-site operator

Oi (i = 1, 2) can be written

〈Oi〉 = lim
N→∞

tr(EN−1EOi )

tr(EN)
.

Let the spectral decomposition of the transfer matrix be

E =
∑
p

µp|Rp〉〈Lp|,

where |Rp〉 and 〈Lp| are the right and left eigenvectors of the transfer matrix, and µp the

corresponding eigenvalues in order of decreasing absolute value. In the generic case, which

we consider here, there is a unique eigenvalue with the largest absolute value µ1 = 1, and

the rest |µp| < 1 for p > 1. Thus,

tr(EN−1EOi )

tr(EN)
−−−→
N→∞

1

µ1

〈L1|EOi |R1〉,

and for the two-body operator, which corresponds to the following TN

〈O[0]
1 O

[l ]
2 〉 = lim

N→∞

tr(EN−`−1EO1
E`−1EO2

)

tr(EN)
=

1

µ`+1
1

〈L1|EO1

[∑
p

µ`−1
p |Rp〉〈Lp|

]
EO2
|R1〉.

The first term in the sum, p = 1, is precisely the disconnected contribution 〈O1〉〈O2〉, such

that the leading contribution to the connected correlator is

CO1O2
=

1

µ2

[(
µ2

µ1

)`−1

〈L1|EO1
|R2〉〈L2|EO2

|R1〉+ . . .

]
.

Since |µ2| < |µ1|, the correlation decays exponentially with the distance ( e−`/ξ) with corre-

lation length 1
ξ

= − log
∣∣∣µ2

µ1

∣∣∣.
Although MPS cannot hold critical (i.e. algebraically decaying) correlations, in practice it

can still be used to study critical systems: it approximates the correlations for larger distances

as D is increased, and there is entanglement scaling.21

The non generic case is that of non-injective MPS, which can accommodate non-decaying

correlations (example: the GHZ state).
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8. MPS and ground states

MPS approximate ground states of local Hamiltonians efficiently.15,22

a. Truncation error

While a generic state can be exactly written as a MPS, this may require an exponentially

large bond dimension, up to d bN/2c. We can construct a MPS approximation with bounded

bond dimension D by truncating the Schmidt values for each bond and keeping only the

largest D. The resulting error can be bounded as

‖|Ψ〉 − |ΨD〉‖2 ≤ 2

N−1∑
α=1

εα(D),

where the sum runs over the bonds and for each of them, if the exact bond dimension is Dα,

εα(D) :=
∑Dα

i=D+1 |λ[α]i
|2.

As a corollary of this result, the error in the MPS approximation of a given state depends

on how fast the Schmidt coefficients decay. In particular, for ground states of local gapped

Hamiltonians,15 said coefficients satisfy (for each cut)∑
k>D

|λk |2 ≤ CD−1/(6ξ log d),

where C is a constant, and ξ a correlation length (more precisely ξ = max
(
v

∆E
, ξc
)

, with ∆E

the energy gap, and v and ξc the velocity and length scale in the Lieb-Robinson bound,23

which control the propagation of correlations).

The error from cutting the Schmidt values can be related to the Rényi entropy which, in

case of critical systems in 1D, scales, for a block of size L, as log(L). As a consequence,

ground states of critical 1D Hamiltonians for a finite size, can be approximated with fixed

error by a MPS with bond dimension that grows polynomially in the system size.22

b. Parent Hamiltonians

Every MPS is the ground state of a local Hamiltonian. If the MPS is injective, the ground

state is unique.

A MPS tensor A is called injective if the map it defines from virtual to physical degrees

of freedom,
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P(A) : CD×D → Cd

P(A) :=
∑
i α β

Aiα β|i〉〈αβ|,

(2)

is injective. P maps a D ×D matrix X to a vector v(X) in the local physical space,

v(X) =
∑
i

tr(AiXT )|i〉.

The injectivity property means that no two matrices of the domain are mapped to the same

vector (equivalently, the kernel is only the null vector), and it is equivalent to the existence

of a left inverse of the A tensor,

If the tensor is injective, by acting on the physical index we can access all the virtual (bound-

ary) space. Injectivity is a generic condition: we can coarse-grain the chain, blocking sites

together and defining larger physical spaces. The physical dimension scales then as d ` for a

block of size `, while the virtual dimension does not change, and thus the dimension of the

physical leg becomes much larger. It is also equivalent to the tensor having a single block in

the canonical form.

In the non-injective case, the canonical form is block diagonal, with

each diagonal block satisfying the canonical form conditions. This

structure cannot span the whole space of D ×D matrices. More-

over, correlations may have a long-range non-decaying part.

Any injective MPS (i.e. all the tensors are injective) is the unique ground state of a

local frustration-free Hamiltonian. We can construct explicitly the parent Hamiltonian for

any MPS Ψ =
∑

tr(Ai11A
i2
2 . . . A

iN
N )|i1i2 . . . iN〉 (injective or not). We define the subspace S2
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spanned by each pair of tensors24

S
[k]
2 :=

 ; X ∈ CD×D


and denote by ΠS [k]

2
the corresponding projector. The parent Hamiltonian can be defined as

the sum of the orthogonal projectors,

Hparent :=
∑
k

(
1− ΠS [k]

2

)
.

Being a sum of projectors, Hparent ≥ 0, and since it annihilates the MPS, Hparent|Ψ〉 = 0,

then |Ψ〉 is a ground state. If the MPS is injective, it can be shown that the ground state is

unique.

MPS can be identified as the suitable class of states to

describe ground states of local Hamiltonians.

The parent Hamiltonian construction also applies to PEPS for the two dimensional case.

It can be shown that injective PEPS are also unique ground states of local frustration free

Hamiltonians. But the implication does not work in the opposite direction.
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C. PEPS

Projected entangled pair states (PEPS) are the natural generalization of the MPS con-

struction to higher dimensions.

1. Definition

Since MPS are a universal family, it is possible to write also the

state of a two dimensional system as a MPS. One needs to select

a linear order for the sites in the system, for which different options

exist. One of them is the so-called snake (shown in the figure). But

we can split the system in two by cutting only one bond (as shown),

and because the entanglement with respect to this partition is upper

bounded by logD, in order to describe a state which satisfies the

entanglement area law, the bond dimension will need to scale as DL

(for a L × L system). While the snake-MPS is used in practice to study two dimensional

systems, due to this reason they have to be chosen to be narrow in one direction. Also notice

that once the linear ordering of sites is selected, interactions that are local in the original

lattice get mapped to long range ones.

Although other orderings of the sites are possible, and some can reduce the range of non-

local interactions and improve the efficiency, but they can not produce an area law.

The quantum information construction of MPS starting from pairs of maximally entangled

virtual particles can be naturally generalized to any lattice geometry by placing one such pair

along each bond in the lattice. In particular, for a regular two dimensional lattice this inserts

four virtual particles per site (except at the edges of the lattice),
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Then the virtual degrees of freedom residing in each lattice site are mapped

onto the physical degrees of freedom by a map P =
∑

i ,`,r,u,d B
i
`rud |i〉〈`rud |.

This corresponds to a rank-5 tensor, graphically represented on the right.

The PEPS ansatz results from contracting all the tensors over the edges,

which we can represent as

|Ψ〉 =
∑
i1...iN

C
({
Bik[k]

})
|i1 . . . iN〉.

Notice that the same construction applies to higher dimensions, and also to any lattice

geometry, resulting in tensors of different rank.

By construction, PEPS automatically satisfy an area law. The argument is the same as

for the MPS construction, since the entropy of a region is upper bounded by that of the

maximally entangled pairs before applying the local maps. In this case, for a region A with

boundary of size |∂A|, the bound is SA ≤ logD|∂A|.

Since they include MPS (the snake construction above is obviously a PEPS where some

of the bonds have dimension 1), PEPS are also a complete family, capable of describing the

whole Hilbert space if the bond dimension is large enough (up to d bL
2/2c for a L× L square

lattice).

2. Examples

a. MPS

PEPS include the MPS family, which constitute an efficiently contractible subset of PEPS

(one which, according to the argument above, cannot contain enough entanglement to repro-

duce the area law). For instance, looking at the snake-MPS shown earlier, we can reinterpret

each tensor as a 4-legged one, with bond dimension one in the directions perpendicular to

the snake.
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b. Toric code

A much less trivial example is that of the ground state of the toric code Hamiltonian.

The toric code was introduced by Kitaev25 as the first instance of topological quantum

computation. The model is defined on a square lattice, with the spin s = 1/2 degrees of

freedom residing on the links. The Hamiltonian reads

H = −JA
∑
v

Av − JB
∑
�

B�,

with JA(B) > 0, and where the first sum runs over each vertex

v of the lattice, and the second one over all the plaquettes.

The corresponding operators are 4-body interactions reading

Av = σxv1
σxv2
σxv3
σxv4

and B� = σzp1
σzp2
σzp3
σzp4

, with products of

operators acting respectively around a vertex or a plaquette

(as illustrated in the picture).

All A and B terms commute with each other, and thus the ground state is an eigenstate

of all of them (i.e. frustration free), satisfying

Av |Ψ〉 = B�|Ψ〉 = |Ψ〉, ∀v , �.

The B� restrictions means an even number of |1〉 around each plaquette, which requires

closed loops, while the Av term moves such loops and thus favours an equal superposition of

all possibilities.

The ground state in an infinite lattice is unique and corresponds

to an equal superposition of loop configurations (or quantum loop

gas) as the one illustrated in the figure, where the sites traversed

by the loop are in state |1〉 and the rest in |0〉. This can also be

written (up to normalization) as

|Ψ〉 ∝
∏
v

(1 + Av)|0〉⊗N.
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Each of the (1 + Av) terms can be exactly expressed as a (periodic)

MPO of bond dimension 2, acting on the four sites around a vertex,

with tensors

M1 =

1 0

0 σx

 .
By taking the product of all such operatos, and grouping together the ones

acting on the same site (two of them), and applying them to |0〉 we can

write the explicit tensors of the PEPS as

B0
abcd = δadδbcδab, B1

abcd = δadδbc(1− δab).

Notice that in one half of the sites the tensor (i.e. the identification of indices a, b, c, d)

is rotated with respect to the other half.

3. Correlations

In contrast to MPS, PEPS can hold correlations that decay as a power law, even with

very small bond dimension. This is so because one can construct quantum states that

encode the partition function of a classical spin model, in such a way that the correlations

in the state exactly reproduce those of the classical model, also at criticality. In particular,

for the 2D classical Ising model, the Hamiltonian reads H({s}) = −
∑
〈i j〉 sisj for classical

spin variables si ∈ {−1,+1}, ant the partition function at inverse temperature β = 1/T is

Zβ =
∑
{s} e

−βH({s}), with the sum running over all possible configurations of the spins.

for a lattice with a total number of sites N, we can define a quantum state

|ΨH,β〉 :=
1√
Zβ

∑
{si}

e−
β
2
H(s1,s2...sN)|s1s2 . . . sN〉,

where the local basis states |sk〉 = | ± 1〉 can be taken to be the eigenstates of σkz . The

expectation values in the z basis can be readily computed, for instance for σz on site k ,

〈ΨH,β|σ[k]
z |ΨH,β〉 =

1

Zβ

∑
{s}

ske
−βH({s}),
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i.e. they equal the corresponding value of the classical model. The same is true for two-

point correlations. The latter has a critical temperature at β = log(1+
√

2)
2

at which correlations

decay as a power law, 〈s0sr 〉 ∼ 1√
r

for two sites at distance r .

The state |ΨH,β〉 can be written exactly as a PEPS with bond dimension D = 2, for any

value of β (in particular for the critical one). We notice that, because σz is diagonal in this

basis,

|ΨH,β〉 :=
1√
Zβ

∏
{si}

e
β
2
σ

[i ]
z σ

[j ]
z

∑
{si}

|s1s2 . . . sN〉.

Thus the state is the result of applying a number of two-body operations of the form e
β
2
σ

[i ]
z σ

[j ]
z

on each of the edges of the lattice, on an initial state
∑
{si} |s1s2 . . . sN〉 = (|0〉+ |1〉)⊗N /2N/2,

which is a product state. By simply writing the Taylor series for the exponentials, we can

express each of the two-body operators as a sum of two product terms (equivalently, we

could apply a SVD to the operator)

eβσ
[i ]
z σ

[j ]
z /2 = cosh

β

2
1⊗1+sinh

β

2
σ[i ]
z ⊗σ[j ]

z .

By grouping together all operators acting on the same site, we obtain an explicit for of the

PEPS tensors, with bond dimension D = 2, which we can represent as

While this shows that PEPS can hold critical correlations with a small bond dimension, it

does not mean that any critical state can be written as a PEPS. States as the one presented

here as special because they represent classical critical states. For quantum critical states

(ground states of a quantum model at a critical point) evidence suggests that an infinite

bond dimension may be needed.26,27
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4. Expectation values and complexity

Different to MPS, contracting a PEPS, for instance to compute its norm, cannot be done

efficiently. The TN representing the norm is shown in the figure,

with every local tensor be-

ing a double layer object,

where the PEPS tensor and

its conjugate are contracted

over the physical index.

While in the one-dimensional analogous picture, this is a product of matrices with constant

dimension, the situation is very different now. If we start contracting together the tensors for

a region of the lattice, we always get an object of increasing dimensions as we keep adding

tensors, such that the cost of the exact contraction grows exponentially with the system

size, as seen explicitly for instance in the sequence below

In fact, it is known28 that the problem of contracting an arbitrary PEPS is #P (the complexity

class of counting satisfying assignments of a Boolean formula).

Preparing the state is also a task that cannot be done efficiently for an arbitrary PEPS,

different to the sequential scheme of MPS. Creating an arbtrary PEPS has been shown to

be in the PP complexity class (determining whether the number of satisfying assignments in

the Boolean formula is more than half), which is harder than NP , BQP and QMA.

However, one can define subfamilies of PEPS which inherit the property of being efficiently

preparable and contractible. as the sequentially generated states.29

Even though an exact contraction is not possible, there are approximate contraction

schemes that allow practical calculations, at the cost of introducing an additional truncation.
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5. Parent Hamiltonians

The parent Hamiltonian construction for MPS generalizes for the PEPS case: every PEPS

is the ground state of a local, frustration free Hamiltonian and, if the PEPS is injective, the

ground state is unique.24,30 The basic argument is the following.

If we consider a region R of the lattice, the corresponding

block of tensors, as shown in the figure, maps the virtual

dimensions on the boundary of the region, dimension D|∂R|

onto the physical degrees of freedom of the block d |R|.

The size of the boundary grows much slower than the number of sites in the region so that,

as in the MPS case, injectivity of the boundary-to-physical map is the generic property. A

PEPS is said to be injective if it can be split in disjoint injective regions.

A parent Hamiltonian can be easily constructed noticing that

the rank of the (d |R| × d |R|) reduced density matrix for the

region R (shown on the right) is upper-bounded by D|∂R|, so

that for big enough R it will have a non-trivial kernel.

Now we can construct a local Hamiltonian h acting on R that fulfills h ≥ 0 and whose kernel

coincides with the support SR or ρR. This can be extended to the whole lattice tensoring

the operator h with identity, and thus

H =
∑
v

hv × 1

(where v runs over all regions and the identity, for each term, acts on the complement of Rv)

has the PEPS as ground state, since 〈Ψ|H|Ψ〉 =
∑

v tr(ρvhv) = 0. Notice that this step does

not require injectivity of the region R (only that the support of ρR is not the whole Hilbert

space, in which case the Hamiltonian would be the null operator). To make the ground state

unique, we need to consider two neighbouring injective regions together and construct a local

Hamiltonian acting on both, in a generalization of the AKLT construction.

In the PEPS case, different than for MPS, injectivity is not a necessary condition for the

uniqueness of the ground state of the parent Hamiltonian:30 there are non-injective PEPS

for which such uniqueness can be proved.
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6. Approximation of thermal states

PEPS can approximate thermal equilibrium states of local Hamiltonians in any dimen-

sion31,32 with polynomial D. In particular, for error ε, D =
(
N
ε

)O(βd log2 d)
.

The starting idea of the proofs is to construct a purification for the thermal state ρβ ∝

e−βH of the form (up to normalization)

|Ψ〉 =
(
e−βH

)
S
⊗ 1E|ΦSE〉,

where the subindices S and E refer to the system and the ancilla (environment), i.e.

trE|Ψ〉〈Ψ| = ρβ.

The state |ΦSE〉 = |φ〉⊗N is the product of a maximally

entangled state |φ〉 ∝
∑

α |αα〉 of each system site with

an ancillary site, and the exponential operator acts on

the system side. In the case of mutually commuting

terms in the Hamiltonian, the exponential can be broken

down to a product of two body terms (as illustrated

in the figure), and using their SVD, the result is then

directly a projected entangled pair operator or PEPO.

In the general case, the terms in the Hamiltonian do not commute with each other.

Then the exponential can be written as a Trotter (or alternative) expansion, followed by a

compression of the result to a PEPS.

7. Boundary theories

PEPS realize a holographic bulk-boundary relation.

The holographic principle states that the information of a region (physical dof) depends

only on its boundary (virtual bonds limiting the region). Conjectured first in the context of

black holes, where the entropy is determined by the area, it has a most prominent realization

in the AdS/SFT correspondence. But other setups manifest this holographic property, too

• the area law of ground and thermal equilibrium states;

• the entanglement spectrum for a region of certain two-dimensional ground states is
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found to resemble the low energy sector of a critical one-dimensional model. For a

given region, the entanglement spectrum is minus the logarithm of the eigenvalues of

the corresponding reduced density matrix.

PEPS realize precisely this type of correspondence in a natural manner: the reduced density

matrix of a bulk region in a 2D PEPS is supported on the one-dimensional virtual boundary,

and the degrees of freedom on which the entanglement Hamiltonian acts are precisely the

virtual ones on the boundary of the region.33,34

For concreteness, we consider a PEPS on a cylinder

of circumference m, and a cut, perpendicular to the

cylinder, that divides the system in two, as illustrated in

the figure.

To simplify the diagrams, we represent each column of the

cylinder as a single tensor (see picture on the left), and then

the reduced density matrix of the left part, obtained by trac-

ing out the physical indices of the columns to the right of

the cut, can be represented by a one-dimensional diagram.

Furthermore, if we group all the contracted (respectively open) physical indices in a single

tensor,

Now we can make use of the polar decomposition of each of the “half-chain” tensors,

L = ULJ, with J =
√
L†L =:

√
σL

R = KVR, with K =
√
RR† =:

√
σR,

where UL and VR are unitary matrices, and J, K are positive. Substituting this in the rdm,

we can finally write
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ρL = UL
√
σLσR

√
σL

T
U†L.

In this expression, UL simply represents a map between the support of the rdm and the

physical indices, i.e. a bulk region. Since it is an isometry, it does not change the spectrum.

This is determined by the matrix
√
σLσR

√
σL

T , which acts on the virtual degrees of freedom

of the boundary. Then a boundary Hamiltonian can be constructed as

Hb := log
(√

σLσR
√
σL

T
)
,

defined on the boundary degrees of freedom.

The locality of the entanglement Hamiltonian is related to the contractibility of the PEPS:

if the Hamiltonian is local, then the product of σ matrices can be approximated by a MPO

with bond dimension that scales polynomially with m (number of bonds in the boundary).

This means that the PEPS can be contracted efficiently (since the contraction of half the

system can be approximated by a MPO). Moreover, using PEPS that represent exact ground

states in different phases, it has been observed that for a gapped phase with local order, the

boundary Hamiltonian is local, while the interaction length diverges when approaching a

critical point (see33).

From the mathematical point of view, PEPS are much more complex than MPS, and many

fundamental questions remain open.35 Some of them are linked to undecidability results.36 A

complete recent review of the mathematical aspects of MPS and PEPS can be found in.37

D. Other families: Tree TN and MERA

1. Tree tensor networks (TTN)

While MPS are extremely useful for numerical studies of even critical systems (thanks to

tools as finite size and finite entanglement scaling), they do not reproduce the scaling of
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correlations characteristic of critical points. This motivated the invention of other families

of tensor networks that capture a larger amount of entanglement. The first example is that

of tree tensor networks (TTN),38 in which the coefficients of the state are restricted to a

TN with a tree structure. For instance, for a binary tree, with maximal bond dimension χ,

the TN looks like

All the tensors in the tree can be chosen to be isometries, which implies that the state is

normalized.

Different to the MPS and PEPS ansatzes discussed until now, the TTN has an additional

renormalization dimension (vertical in the figure). The tree indeed implements a real space

renormalization by reducing the physical degrees of freedom to virtual ones, such that the

system is successively coarse-grained, and higher layers represent larger scales. In going up,

i.e. passing from a smaller to a larger scale, short-range information is discarded (by the

isometries).

Local observables can also be computed efficiently. For instance, for a one-site operator,

and making use of the isometric property of the tensors,

where the last step is simply the result of contracting together everything outside the green

dashed box.
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Actually, looking at the middle picture from inside out,

we can read the rdm for two sites, as the figure explicitly

shows. From this construction, we can see that the rank

of the rdm is bounded by the product of the dimensions

of the virtual legs that cross the red line.

This is actually the way to bound the entanglement that a given subchain of length L

can hold: we just need to count the number of virtual legs that need to be cut in order to

split our subsystem from the rest. We can see that it will depend on the particular block

of L sites: since by cutting one bond we split the system in two, there are blocks of length

≥ L that are connected to the TN by a single bond, and thus have entropy upper-bounded

by a constant logχ, as in the MPS case (area law). However, for other blocks, the number

of bonds that need to be cut may grow as logL, and thus the entanglement of the block

is upper-bounded by logχ logL (as in the critical case). This is illustrated in the figure, for

the binary tree example (where, actually, the upper bound to the number of legs to be cut is

log2 L.

Trees can thus reproduce critical (power-law decaying) correlations in average (for in-

stance, in an homogeneous system, one can construct a linear superposition of TTN trans-

lated with respect to each other).39 They can also be used equally for PBC (same graph)

and in higher dimensions.
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The diagrams above also allow us to see that it is efficient

to compute expectation values of local operators with this

ansatz. For instance, the cost of computing the expectation

values of a single-site operator is upper-bounded by the cost

of computing the rdm for the two sites. this can be read

from the diagram on the right, where the contraction costs

of the different steps are indicated explicitly.

Notice that, even if we would consider a deeper tree, the cost of successive steps would

not increase further than O(χ4). This is due to the fact that the causal cone, i.e. the set

of the TN “pinned” by a local operator (indicated in the following picture by a shadowed

region), has a bounded width: the number of tensors included at each scale does not increase

when moving up in the tree.

The property of being efficiently contractible is common for all TNS which do not contain

loops (e.g. for MPS, but not for PEPS).

A drawback of TTN is that it cannot properly renormalize entanglement: short-range

correlations can persist at arbitrarily large scales. Consider, for instance, a state with only

short-range correlations, as illustrated in the lowest level of the next figure (notice the physical

sites are composed of two qubits).
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We can find a layer of isometries that reduces two sites to one (mapping d2 → d), but they

cannot remove the entanglement between isometries, such that those correlations get now

mapped to a longer length.

2. Multiscale entanglement renormalization ansatz (MERA)

To put remedy to the problem of TTN that we just described, G. Vidal introduced the

MERA family.40 Starting from the renormalization idea of TTN, in MERA an extra step is

introduced, before each layer of isometries, to try to remove the inter-block entanglement.

To do that, the ansatz introduces layers of unitary tensors, or disentanglers that can modify

the entanglement between blocks of sites later blocked together by the isometries. The

resulting TN then can be represented as the following figure (for a piece of a larger system).

As a simple example, for the state with short-range correlations considered above, one

layer of unitaries followed by one of isometries, as illustrated below, can completely remove

the entanglement in the state. That means this state can be exactly represented by a MERA

with only one renormalization step.
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As in the case of the TTN, the MERA performs a renormalization of the physical degrees

of freedom.
For a finite system of N sites,

the number of layers (each

layer consisting of a set of dis-

entanglers and a set of isome-

tries) is at most log2N.

(Notice that other combinations are possible, e.g. 3-to-1 isometries). Counting the levels

from the root of the MERA, at level θ, the number of effective sites is 2θ. The total number

of tensors can be easily computed to be 2N(1 − 1
N

), i.e. it is upper-bounded by 2N. Since

the largest tensors are the disentanglers, with O(χ4) components, the number of variational

parameters in the MERA is thus O(χ4N).

The entropy of a subchain can be upper-bounded by counting the number of legs that

we need to cut to decouple the block from the TN. In contrast to the tree, we can see

that in the MERA, all blocks can have entropy that scale as logL (they are not all equal,

since the MERA structure breaks the translational symmetry, but the scaling is the same).

In particular, in the figure we show several block sizes and the number of cuts corresponding

to them, which in those cases is 2 log2 L− 1.
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The entropy of a subchain of length L is thus upper-bounded by ∼ logχ logL and thus it

violates the area law logarithmically, as in the case of critical chains.

MERA can also be defined in higher dimensions. However, it has been proved that in

two dimensions they can be efficiently mapped to PEPS,41 and thus satisfy the area law. In

particular, MERA are a subset of PEPS that can be efficiently contracted.

Although the TN in this case contains loops, certain expectation values can be contracted

efficiently, which makes them suitable for numerical algorithms.42 This is thanks to the iso-

metric and unitarity properties of the constituent tensors. It is the case of the norm (which

reduces to the contraction of the root tensor with its adjoint), and of expectation values of

local operators (i.e. acting on a region of constant size).

As in the case of TTN, the width of the causal

cone for a region of fixed size is upper-bounded by

a constant (it does not grow when moving up the

renormalization steps).

Thus, it is possible to bound the computational

cost of contracting these quantities. In particu-

lar, for the 2-site rdm, we obtain the figure on the

right.

To see that the contraction can be done efficiently, we notice that the width is constant

and the height is log2N. If we contract layer by layer, starting from the innermost part of

the diagram (root tensor), each step only requires contracting a fixed number of tensors, and

thus the cost scales as poly(χ) logN. The same kind of scaling holds for higher dimensional

MERA.
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An interesting interpretation of MERA is as a quan-

tum circuit43 that acts on a product state |0〉⊗N and

preparing the state: each isometry can be seen as a

unitary that acts (downwards) on |0〉 and the state

of a virtual bond.

Finally, one fundamental aspect of interest of MERA is their interpretation as implementing

a renormalization group transformation: the tensors of the MERA can be used to map

operators (for instance, the terms in the Hamiltonian) to higher scales, i.e. to a coarse-

grained lattice.

E. TNS and symmetries

Symmetric states can be built up from tensors with well-defined symmetries. In this way,

the individual tensors are local building blocks that determine the physical properties of the

collective state.

If a state has a global symmetry, it fulfills

U⊗N |Ψ〉 = |Ψ〉,

where U is a unitary transformation that acts on the physical indices. For a MPS, for instance,

If all the individual tensors are symmetric, i.e. they

remain invariant under acting with the transforma-

tion on all the legs, as illustrated, then the resulting

state is invariant.

In the case of MPS and PEPS, because they satisfy a fundamental theorem that relates

the tensors that represent the same state, the implication goes both ways: for an invariant

state there is a representation with invariant tensors, namely the symmetry acts on the

tensors as
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∑
j

(U)i j A
j = Z−1AiZ,

If the symmetry operation is a representation of a group G, i.e. U⊗Ng |Ψ〉 = |Ψ〉, ∀g ∈ G,

and UgUh = Ugh, the action of the transformation on the tensor is

∑
j

(Ug)i j A
j = V †g A

iVg,

where Vg are representations of the group on the virtual spaces.

However, because there is a phase freedom (as a phase factor Vg → e iφgVg would be com-

pensated in V †g ), the Vg do not need to be linear representations but can be projective rep-

resentations, satisfying VgVh = e iω(g,h)Vgh. This is a very powerful result: the inequivalent

projective representations actually classify the possible quantum phases under a symmetry in

one dimension.44,45

From the practical point of view, the invariance of the tensors implies that they can be

decomposed,46 and their structure can be exploited to have more efficient simulations, and

explicitly invariant ansatzes. More concretely, the virtual space can be decomposed as a

direct sum over the irreps of the group, and the virtual indices can be written as composite

ones, |α〉 = |j, mj , αj〉, where j indexes the irrep, mj the states within it (e.g. for non-

Abelian symmetries) and αj are the degeneracy states, i.e. it runs over the dimension of

the virtual space assigned to the j, mj Since virtual legs have assigned irrep labels, not all

elements of the tensor are independent, but they are constrained by the symmetry. One

of the simplest examples to visualize is that of a three legged-tensor (e.g. a MPS tensor),

which, applying Wigner-Eckart theorem, can be decomposed in the product of a degeneracy

tensor P , containing all variational parameters (the components not fixed by the symmetry)

and one structural tensor, completely determined by the symmetry labels. Graphically:
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T
(rmrγr )
(jmjαj ),(smsβs) = (Pjsr)

γr
αj βs

S
(rmr )
(jmj )(sms),

For instance, in the SU(2) case, for the example above the structural part will simply corre-

spond to S
(rmr )
(jmj )(sms) = 〈jmj , sms |rmr 〉, the Clebsch-Gordan coefficients. More general tensors

can be either decomposed in interconnected three-legged pieces, or directly written as sums

of blocks. A complete introduction to the practical treatment of symmetric tensors can be

found in.47

III. Representing operators as TN

A. Matrix product operators (MPO)

All the ansatzes discussed so far have been used only for pure states. They are actually

descriptions of families of vectors in a vector space with a tensor product structure. As such,

we can use the ansatzes more generally to describe operators. The most significant case is

the one-dimensional matrix product operator (MPO).48–50

Operators acting on a many-body system can be expressed in a tensor product basis, such

as {|ik〉〈jk |}⊗Ni,j=0,...d−1, or a Pauli basis {σα}⊗N, with each {σα} := {1
2
, σ

x

2
, σ

y

2
, σ

z

2
}. A MPO is

simply an operator with coefficients in the chosen basis having MPS form. Explicitly,

O =
∑
{αk}

tr
(
Mα1

[1]M
α2

[2] . . .M
αN
[N]

)
Oα1

[1]⊗O
α2

[2]⊗. . . O
αN
[N],

where the Oαk[k] are elements of a tensor product basis for the operator space.

1. MPO for local Hamiltonians

Many interesting operators can be written exactly (or approximately) in this form. Trivially,
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a tensor product operator is a MPO with bond dimension one. But also local operators (for

instance, local Hamiltonians) are MPOs with small bond dimension.

One of the simplest examples is the total magnetization of a spin 1/2 chain (a factor 1/2

is ignored for convenience),

Sx :=
∑
k

σx[k] = σx[1] ⊗ 1⊗ . . . 1 + 1⊗ σx[2] ⊗ . . . 1 + . . .+ 1⊗ . . . 1⊗ σx[N].

The last expression explicitly shows the coefficients of the operator in a product basis. we

notice that these are exactly the same as those for the (unnormalized) W-state

|10 . . . 0〉+ |010 . . . 0〉+ . . .+ |0 . . . 01〉,

and thus the MPS tensors for that state are also valid for this operator, namely

M0 =

1 0

0 1

 , M1 =

0 1

0 0

 .
The only difference is that they will be coefficients in a different basis, in which we identify

|0〉 ≡ 1 and |1〉 ≡ σx .

For MPOs it is common to use another way of writing the 4-legged tensors, which have

elements M̃ i j
`r =

∑
αM

α
`rO

α
ij , by showing them as operator valued matrices, where the indices

of the matrices correspond to the virtual degrees of freedom (as in the example shown above)

and the physical indices are written in a compact way as an operator. More concretely, the

operator in element (`r) is M̃`r =
∑

αM
α
`rO

α.

For instance, for the previous case,

M̃ =

1 σx

0 1

 .
Notice that the tensors for the edge sites will be different (the same as for the OBC MPS),

with

M̃[1] =
(

1 σx
)
, M̃[N] =

σx
1

 .
The middle tensors in this particular example are all equal, but we can change the weights

of the different terms to represent a position-dependent operator
∑

k CkÔ[k] for any single
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site operator Ô[k] with essentially the same construction, only allowing the M̃ tensors to

depend on the site k by changing σx → CkÔ[k].

Any sum of nearest-neighbour operators (in particular, nearest-neighbour Hamiltonians)

can be constructed in a similar way. But also other operators that are sums of terms with a

regular structure.

2. Finite state automata and MPS/MPO

A more general perspective is provided by the connection between MPS/MPO and finite

state automata (FSA).

In computer science, FSA are a computation model that accepts regular expressions. A

FSA is defined by

• a set of states S, containing an initial state s0 and a (set of) final state;

• an input alphabet Σ, i.e. a set of symbols which can be accepted;

• a transition function, i.e. a set of possible transitions between states triggered by the

input S ×Σ→ S.

If the automaton is in a certain state s, it can accept a symbol ε ∈ Σ and at the same time

change its state to s ′ ∈ S if it contains a transition (s, ε)→ s ′. Starting in the initial state,

the FSA accepts a certain string if it sequentially accepts all its symbols and ends up in a

final state.

MPS (or MPO) with open boundary conditions can also be seen as FSA with a fixed

number of transitions51 in the following way:

• each distinct value of the virtual bond corresponds to a state of the FSA,

• the different values of the physical index (which label the states of the local bases)

correspond to the input symbols,

• each non-vanishing element of the MPS tensor Ai`r 6= 0 corresponds to a valid transition

of the automaton (`, i)→ r , which graphically we represent as
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As a simple example we may consider the W-state (equivalently, the local operator Sx =∑
k σ

x
[k]) discussed above. The regular expression that includes all components of the state

is 0*10* (matches any string that contains exactly one character 1, and any number of 0s).

The following FSA, represented on the right by its state diagram (in which an arrow indicates

the initial state and a double line the final one), recognizes this pattern:

• S = {A,B}, s0 = A, F = {B},

• Σ = {0, 1},

• δ = {(A, 0)→ A, (A, 1)→ B, (B, 0)→ B}.

In the MPS representation, the same transition function corresponds to

where we interpret A and B as two different labels for the virtual bonds, which means the

required bond dimension is D = 2. So that the MPS describes a chain of length N, we need

to fix the length of the input strings (i.e. the number of tensors) to N, and demand that the

boundary tensors ensure the desired initial and final states. The left virtual index of the first

tensor must thus in this case correspond to the index A, while the right virtual index of the

last tensor needs to be B. Equivalently, the edge bonds of the tensors at the boundary have

dimension 1, and we can specify only their non-vanishing components, namely
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It is easy to check that these elements correspond precisely to the M tensors explicitly written

above. The input symbols 0 and 1 correspond to the states of the physical local basis in the

case of the W-state.

If we are trying to write the MPO for a magnetization Sβ =∑
k σ

β
[k], we can identify the symbols with operators 0 ≡ 1, 1 ≡

σβ. This conversion from the input label to the operator elements

in the physical basis can also be represented (and computed) as

a tensor contraction, as indicated in the figure.

Notice that the non-vanishing elements of the tensor can be of different magnitude (and

they can be complex), which allows us to represent sums of terms with regular structure but

having different coefficients.

In a similar way one can find the MPO for any nearest neighbour Hamiltonian (e.g. the

Ising term requires D = 2 because there is one extra state needed, corresponding to the

intermediate position in the two-body term). If the range of the terms increases, so does in

general the bond dimension required in the MPO, although there are exceptions that can be

written exactly with small bond dimension. For instance, exponentially decaying interactions

can be written with small bond dimension, while algebraically decaying ones need a bond

dimension that grows with the system size. Nevertheless, they can be approximated as a

sum of exponentials.50

The FSA construction is mostly useful to exactly write certain operators as MPO. In

other scenarios, MPOs are used to approximate operators, for instance in order to apply

time evolution to a certain state. In that case, a Suzuki-Trotter expansion (but also other

approximation schemes) can be applied to write the evolution operator in terms of pieces

which can themselves be expressed as MPOs.

3. MPO as ansatz for density operators

The MPO can also be used as a variational ansatz, to represent mixed states, for instance,

systems in thermal equilibrium or open systems in interaction with a bath. But while a (not

identically null) MPS always defines a physically valid state (the only condition being it to be
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normalized), not all operators are valid density matrices. MPO representing density operators

(MPDOs) have to satisfy the following physical conditions.

• Normalization, trρ = 1. Computing the trace of a MPO can be done efficiently, as

indicated by the diagram. Thus, it is possible to normalize the MPO dividing by the

result of this contraction (if the latter does not vanish).

• Hermiticity, ρ = ρ†. Given a MPO that is not Hermitian, we can always take its

Hermitian part, by summing the MPO with its HErmitian conjugate (which is also a

MPO with the same bond dimension).

This will also produce a MPO (with, in general, doubled bond dimension), and thus

can be imposed within the MPO framework.

• Positivity, ρ ≥ 0, is a different story: the condition for a matrix to be positive semidef-

inite is not a local one, in a many-body operator, but involves all the spectrum of

the matrix, which is exponentially costly to compute and thus virtually impossible for

sufficiently large systems.

Recall that a Hermitian matrix is said to be positive semidefinite, denoted M ≥ 0 if all its

eigenvalues are non-negative. In the MPO case, in fact, if we are given the tensors, it is a

very hard problem to decide whether the MPO is or not positive: for a finite system, it is

NP-hard, and it is undecidable in the thermodynamic limit.52

The first two conditions can be imposed within the form of a MPO, but positivity cannot.

However, one can define a more restrictive family of MPOs that are positive by construction:

the purification ansatz .48,53 We know that for any mixed state there exists a purification, i.e.
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a pure state defined on an enlarged system with an additional environment, such that tracing

out the ancilla returns the mixed state of the system. The purification ansatz (MPDO)

corresponds to assuming for the purification a particular structure, where for each system

site, we introduce an ancillary site of the same dimension, and group them together in an

effective site of squared physical dimension.

The purified state |Φ〉SE is as-

sumed to have a MPS struc-

ture in this basis, and to be

normalized, and the MPDO is

obtained when tracing out the

ancillary sites, as shown in the

picture.

Because it is constructed from the partial trace of a normalized state, the resulting MPDO

is a valid physical state. But it is not the most general MPO, because the tensors have a

particular structure, M ˜̀̃r =
∑

k A
ik
`rA

jk
`′r ′, with ˜̀= (`, `′) (same for r̃). In practice, it is possible

to use this positive ansatz in numerics (although the algorithms become less efficient, because

higher degree dependence on the variational parameters A mean that iterative numerical

methods have to be used).

Given a MPO which is positive, it may be that expressing it exactly as a purification requires

exponentially large bond dimension.53 However, it is possible to find an efficient approximation

with the purification form.

Computing expectation values in a MPO involves calcu-

lating traces like tr(Oρ), illustrated in the figure, which

can be done efficiently.

Notice that a MPO can be mapped to a MPS by vectorizing it, i.e. by mapping the basis

elements to vectors as |i〉〈j | → |i〉|j〉. Graphically,
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This allows us to use MPS algorithms and routines on MPOs. In particular, the expectation

value shown above can be written as the contraction of two vectors, each one corresponding

to a vectorized MPO, tr(Oρ) = 〈O†|ρ〉. Notice that the scalar product on the right is

equivalent to the Hilbert-Schmidt product of operators 〈A|B〉 = tr(A†B). Alternatively,

we can also write the same quantity as a contraction of a MPO between two MPS, the

latter corresponding to vectorized operators for ρ and the identity, and the MPO being a

superoperator that acts as O on the first (output) indices of |rho〉 and as identity on the

others, i.e. tr(Oρ) = 〈1|O ⊗ 1|ρ〉. Notice that in this case, the vectorized |Id〉 is not a

normalized MPS. In diagrams,

If we consider the purification ansatz, ρ = trE (|ΦSE〉〈ΦSE|), the expectation values reduce

to a simple expectation value in the purified state, tr(Oρ) = trS (OtrE (|ΦSE〉〈ΦSE|)) =

〈ΦSE|OS ⊗ 1E|ΦSE〉, with the operator acting only non-trivially on the system indices, and

as the identity on the environment ones. Graphically,
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4. Thermal states

The purification ansatz is very natural for thermal states. The thermal equilibrium state

of a system with Hamiltonian H at inverse temperature β is given by the Gibbs ensemble,

ρβ =
e−βH

tr (e−βH)

A purification of this state is the so-called thermofield double state,

|Ψβ〉 =
1√
Z

∑
n

e−βEn/2|En〉S|En〉A,

where Z = tr
(
e−βH

)
is the partition function, and the sum runs over all eigenstates of the

Hamiltonian, H|En〉 = En|En〉. The subindices S (A) indicate the original system and a copy,

the ancilla. We can rewrite the state as

|Ψβ〉 =
1√
Z
e−βH/2

∑
n

|En〉S|En〉A ∝
(
e−βH/2 ⊗ 1

)
|1〉SA,

where the vector |1〉SA is (up to normalization) a maximally entangled state between system

and ancilla. As written above, the exponential operator acts on the first set of indices (S),

but it can also be chosen to act on the ancilla only, or split as e−βH/4 ⊗ e−βHT /4 (where the

transposition results from the vectorizing map).

We know that MPO are good to approximate Gibbs states of local Hamiltonians, i.e.

operators of the form e−βH can be efficiently approximated by this ansatz. By constructing

such approximation for β/2 and vectorizing it, which is equivalent to acting with it on the

vectorized identity, we have a purification for the thermal state. Graphically,

Usually, the MPO approximation of e−βH/2 is found in practice by applying imaginary time

evolution to the identity via a Suzuki-Trotter expansion. This can then be used to compute

expectation values in thermal equilibrium, but also to simulate evolution in real time and

compute thermal response functions.54
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B. PEPOs

Like the MPS, the MPO construction can also be naturally generalized to higher dimen-

sional lattices. In that case, we can define a PEPO (projected entangled pair operator). This

ansatz can be used also to approximate density operators and, in particular thermal states

(either directly or, more commonly, through a purification). Of course, it is also possible to

describe exactly local interactions, even though this is much less used in practical calculations

than the analogous MPO, due to the computational costs of the algorithms.
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Phys. Rev. Lett. 125, 210504 (2020).

37 I. Cirac, D. Perez-Garcia, N. Schuch, and F. Verstraete, “Matrix product states and projected

entangled pair states: Concepts, symmetries, and theorems,” (2020), arXiv:2011.12127 [quant-

55

http://dx.doi.org/10.1103/RevModPhys.82.277
http://dx.doi.org/10.1073/pnas.1605716113
http://dx.doi.org/10.1073/pnas.1605716113
http://arxiv.org/abs/https://www.pnas.org/content/113/47/13278.full.pdf
http://dx.doi.org/10.1103/PhysRevLett.100.070502
http://dx.doi.org/10.1103/PhysRevLett.59.799
http://arxiv.org/abs/quant-ph/0608197
http://dx.doi.org/ 10.1103/PhysRevLett.95.110503
http://dx.doi.org/ 10.1103/PhysRevLett.95.110503
http://dx.doi.org/10.1103/PhysRevB.86.075117
http://dx.doi.org/10.1103/PhysRevB.73.094423
http://dx.doi.org/10.1007/BF01645779
http://dx.doi.org/ https://doi.org/10.1016/j.aop.2010.05.008
http://dx.doi.org/https://doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1103/PhysRevX.8.031031
http://dx.doi.org/10.1103/PhysRevX.8.031030
http://dx.doi.org/10.1103/PhysRevLett.98.140506
http://dx.doi.org/10.1103/PhysRevA.77.052306
http://dx.doi.org/10.1103/PhysRevA.77.052306
http://arxiv.org/abs/0707.2260
http://dx.doi.org/10.1103/PhysRevB.73.085115
http://dx.doi.org/10.1103/PhysRevB.91.045138
http://dx.doi.org/ 10.1103/PhysRevB.83.245134
http://dx.doi.org/10.1103/PhysRevLett.111.090501
http://dx.doi.org/10.1007/s13163-019-00318-x
http://dx.doi.org/10.1007/s13163-019-00318-x
http://dx.doi.org/ 10.1103/PhysRevLett.125.210504
http://arxiv.org/abs/2011.12127
http://arxiv.org/abs/2011.12127


B PEPOs III REPRESENTING OPERATORS AS TN

ph].

38 Y.-Y. Shi, L.-M. Duan, and G. Vidal, Phys. Rev. A 74, 022320 (2006).

39 P. Silvi, V. Giovannetti, S. Montangero, M. Rizzi, J. I. Cirac, and R. Fazio, Phys. Rev. A 81,

062335 (2010).

40 G. Vidal, Phys. Rev. Lett. 99, 220405 (2007).

41 T. Barthel, M. Kliesch, and J. Eisert, Phys. Rev. Lett. 105, 010502 (2010).

42 G. Evenbly and G. Vidal, Phys. Rev. B 79, 144108 (2009).

43 G. Vidal, Phys. Rev. Lett. 101, 110501 (2008).

44 X. Chen, Z.-C. Gu, and X.-G. Wen, Phys. Rev. B 83, 035107 (2011).
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